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Abstract. Depth information is an important auxiliary component to biolog-
ical and artificial visual systems alike. In an object detection context, it is
usually used for object segmentation, for 3D localization of visually matched
objects or for direct identification of objects without visual information. How-
ever, in all these approaches, depth annotations are handled independently
of the visual object recognition process. Here, we present a novel, biologi-
cally motivated approach in which luminance and depth information are pro-
cessed directly as compound features within a pattern matching hierarchy.
We apply the model to train a feature dictionary from a dataset of 3D-
rendered objects and show that resulting features include both depth and
shape information. We show that these features can be used to improve per-
formance on object detection as well as localization tasks. We further show
that the depth annotations in the feature dictionary can be used to produce a
3D structure estimate if only 2D shape information is present.
We hypothesize that binding of multiple submodalities into compound fea-
tures may prove to be an important building block of how visual information
is represented in the human brain and knowledge of this structure might helps
us make artificial object recognition systems more robust.
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1 Introduction

Despite decades of extensive research, visual pattern recognition in natural scenes
remains a constant challenge in research of artificial intelligence [13]. Advancements
in this task play a key role in development of autonomous agents - consider for ex-
ample the technological progress from the first unsuccessful trials of self-driving cars
in a desert in 2004 [22] to autonomous cars driving 100’000s of kilometers crash-free
on public roads less than a decade later [1].

Notwithstanding the power of technological progress, artificial visual frameworks
are usually built and fine-tuned to a specific problem at hand. Humans still outper-
form such machines in that we have a system that works reliably and robustly when
performing a wide range of tasks such as object segmentation and recognition, self-
localization and scene categorization, utilizing all available visual dimensions includ-
ing luminance, color and depth.

How exactly the humans visual system solves these problems is still poorly under-
stood [3]. In particular, it is still unclear how and on which level humans integrate the
different visual submodalities for the purpose of object recognition.

Regarding luminance processing, a popular and very promising modeling ap-
proach for the human visual system is given by hierarchical (“deep”) neural net-
works [8, 15]. They consist of a cascade of layers which match simple features such
as edges and corners at the early stages and build increasingly complex features on



top of that. Features to be matched are commonly extracted in an unsupervised man-
ner from a set of natural images. This structure reflects electrophysiological findings
on the visual cortex of primates [20]. However, the hierarchical vision models usually
ignore two important visual properties of natural scenes, which both contribute to the
strong performance achieved by biological systems: Spectral reflectance of different
materials and depth structure.

Depth processing through disparity calculations between retinal images of the eyes
is a relatively young development in vertebrates [12]. It gives predators a crucial ad-
vantages by breaking camouflage of potential prey that mimics the reflectance of their
surroundings, but is not able to conceal their depth structure [7]. Neurophysiologically,
depth processing has been established to happen in visual cortex areas V3/KO [2,14].
Recently, functional magnetic resonance imaging studies have shown evidence that
these areas do not just process disparity cues into a depth map, but integrate directly
with texture properties as well [9].

Although depth information is commonly used in robot vision systems, the tradi-
tional approach consists of processing disparity separately from visual information to
generate a depth image. This depth image is either used solely for object recognition,
or within a 2.5D image map to perform object segmentation [17].

Based on the neurobiological findings from [9] and on considerations about com-
putational efficiency, we here introduce a novel method of calculating and binding
disparity directly to features. To this end, we build on a hierarchical neural network
model called HMax, which has been developed to model human performance on
rapid animal detection in natural scenes [18]. We integrate this with a disparity calcu-
lation not on the input image, but on recognized features on intermediate levels of the
HMax hierarchy and bind the information directly into the stored pattern dictionary.

The main contributions of this paper are: We present a neurobiologically motivated
image processing model that binds shape and disparity information into compound
features early in the processing hierarchy. We show that such features can be used
for visually driven object classification and localization tasks, and to reproduce depth
information when only monocular shape cues are present.

2 Methods

HMax stereo model

We built the presented model as an extension to the HMax implementation by [18].
The standard HMax layers are only described briefly here. For an in-depth description
of simple and complex cell layers of this model type, the reader shall consult [18]
and [11].

The core principle of HMax is to alternate between layers of simple and complex
cells, where the simple cell layers implement pattern matching and the complex cell
layers implement pooling over matched patterns at several locations and scales. This
alteration of different layer types achieves a trade-off between specifity to a stored
pattern and invariance to variations in location and scale of the pattern. Cells in layers
early in the processing hierarchy have small receptive field sizes and correspond to
simple patterns. In higher stages, both receptive field size and pattern complexity
increase.

In our study, we extend the simple and complex cell layer hierarchy of [18]. We
duplicate the model into two parallel processing paths and insert matching layers to
calculate local disparity. The resulting architecture is illustrated in figure 1.
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Figure 1: Schematic illustration of HMax implementation: The model alternates be-
tween matching (blue) and pooling (green) layers. Matching layers match patterns at
several scales and locations, while pooling layers provide invariance over a region of
the matched scales and locations. We add disparity matching layers (yellow) to the
matching stage, i.e. layers that take the input data from one eye, find correspond-
ing patterns in the other eye and store the horizontal spatial difference between the
matches as a disparity map. Information from this map is then used to annotate the
features with relative depth components. An additional disparity matching stage is
introduced later in the hierarchy because matching of more complex patterns is less
prone to errors introduced due to ambiguous matches.



Input images (RI). A pair of corresponding grayscale input images for each eye is
loaded into layers RIL and RIR for left and right eye respectively. For each layer, ten
spatial scales between 256x256 and 52x52 are created by downscaling with linear
interpolation (layers SIL and SIR).

Simple cell layers (S1). On every resolution, Gabor filters of four different ori-
entations are used to detect edges, leading to four feature maps for each scale on
layers S1L and S1R. Filters are applied as normalized dot product, i.e. the image is
convolved with the filter and then divided by the average input pixel luminance.

Disparity layers (D1). Disparity matching is done separately for each feature at
every location where the feature activation exceeds a threshold value α. A matching
score v for a disparity d of corresponding feature activations fL and fR in layers S1L

S1R at location x, y is calculated as the sum within a window of size w:

v(d, f, x, y) :=

+w∑
x′=−w

(
fA(x+ x′, y)

1 + |fA(x+ x′, y)− fB(x+ x′ + d, y)|

)

The maximum matching score within a matching range m is determined:

dbest(f, x, y) := argmax
d∈[−m,m]

v(d, f, x, y)

This means that instead of one depth map per image, matching is done on a per-
feature basis and each feature carries its own disparity information. The dispar-
ity value is probably incorrect at every location where the feature is not matched
(fL(x, y) = 0), but this is irrelevant as unmatched features are not stored in the dic-
tionary of following simple cell layers.

Disparity layers are concatenated with their corresponding edge feature layer of
each processing path into common feature vectors in layers SD1L and SD1R.

Local invariance pooling (C1). To simulate complex cell behavior [6], SD1 re-
sponses of neighbored locations and scales are combined with a max function. This
leads to spatial invariance of responses at the cost of spatial resolution.

Simple cell layers (S2). S2A and S2B layers simulate simple cells again. Cells
in this layer match their input against a dictionary of stored patterns sampled from
random locations and scales of a separate set of sample images. Matching between
input and stored pattern happens as Gaussian radial basis functions. Since the layer
contains both image and disparity features from layer SD1, patterns are compared
based on visual as well as on depth properties. To account for the simplicity of the
task, we choose a very small dictionary size of 32 templates.

Disparity layers (D2). The matching algorithm of D1 is repeated in D2 using
input layers S2L and S2R. Again, disparity is re-concatenated into the feature vectors
resulting in mixed modality layers SD2L and SD2R.

Global invariance (C2). In the final model layer, global maximum is taken over all
scales and all locations of a feature. This leads to one value per feature per image,
which can be fed into a classifier.

The model is implemented in CNS, a GPU-based framework by Mutch et al. [10].
Since processing in the model hierarchy is strictly feed-forward, efficient paralleliza-
tion on GPU hardware is possible. One complete iteration of an image pair runs in
217ms on an nVidia GeForce8800M GTX GPU, which makes it potentially usable for
real-time applications.
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Figure 2: Examples of rendered objects. a) Cylinder class; b) Box class. Monocular
dicrimination can happen on small features at the top and bottom caps of the object
only. Binocular dicrimination is able to store local depth structure based on the offset
of the shading between left and right image, as well as the shading itself, into a feature
to identify cylindrical objects.

Datasets and classification

A dataset to evaluate the model has to be carefully chosen to be a) not completely
trivial so it could be done on simple shapes and b) sufficiently simple so a classifier
working on low level image features, since we only run the low levels of the HMax
hierarchy. Therefore, we used POV-Ray1 to render a dataset of relatively simple ob-
jects at varying angles and scales (see figure 2). The total dataset size is 150 images
per category. In the object recognition task the two tested classes are cylinders and
cubes. In the localization task, the two classes both show cylinders, where one set of
cylinders is closer and one is farther from the camera.

We test the model on classification performance between the two shapes doing
linear regression with the GURLS software package [19]. To normalize feature count
from all input stages, we run principal component analysis and extract the first 128
components of the output vector. Then we split all outputs into a randomized training
set of ten images and test performance on the remaining items. Because perfor-
mance variability between different training set splits is relatively high, each classifi-
cation is repeated 500 times with randomized test and training sets and the results
are used to calculate test statistics.

To determine whether disparity features improve classification performance, dis-
parity is removed from all images in a monocular control run. Significance in dif-
ference between monocular and stereo models is calculated with an unpaired t-test
between these runs.

3 Results

Classification

Resulting mean performances for different conditions are plotted in figure 3. For
the object recognition task (see fig. 3a), the strongest performance at 58.3% correct
is achieved by classifying on C2 feature outputs. This is significantly higher than 57%

1“Persistence of Vision Raytracer”, http://povray.org/



SD1 C1 SD2 C2
0.5

0.55

0.6

0.65

*** ***

***

P
er

ce
nt

 c
or

re
ct

Model stage

Object recognition

 

 
Stereo
Mono

a

SD1 C1 SD2 C2
0.5

0.6

0.7

0.8

0.9

1

***
*

***

P
er

ce
nt

 c
or

re
ct

Model stage

Localization
b

Figure 3: Results performances of classification task on a) object recognition dataset
and b) localization dataset for monocular and binocular input. Labels SD1 to C2
correspond to model stages illustrated in figure 1. Asterisks mark significance level
of difference between monocular and stereo run.

achieved by monocular input (p < 0.001). This shows that disparity bound into the
higher level features contributes to the dicriminability between the classes.

Classification on features extracted from lower levels of the architecture yields low
performances barely above chance level (see fig. 3a SD1 and C1). We can conclude
that object recognition depends on the translation and scale invariance introduced in
the final complex cell layer.

On the localization task, absolute performance is higher than on the object recog-
nition task (see fig. 3b). Surprisingly, classification on low level features in SD1, i.e.
the first pattern merging stage, leads to higher performance than on high level SD2
features. This hints that localization can be performed well on low-level features and
the pooling introduced by high level layers discards information that is crucial for lo-
calization tasks.

Again, the performance gain from adding disparity into the features is significant
both on low level S1 features (p < 0.0001) and on high level C2 features (p < 0.0001).
This result shows that although no full disparity map is calculated by our approach,
binding disparity on stored patterns provides sufficient information to encode the lo-
cation of the object in depth.

Depth reconstruction
One key advantage of encoding information in multi-modal patterns is that after

features have been learned, modalities can be reconstruct from each other. To illus-
trate this approach, we match SD2 patterns learned on binocular image to a monoc-
ular image input. We then sum up the disparity component of all matched features
at every location. The resulting depth image reconstructed from a cube is shown in
figure 4.

The image shows that valid depth information could be reconstructed near loca-
tions that had valid pattern matches of low level features, i.e. edges and corners. No
depth information is present at the center of the cube because due to lack of tex-
tures, no features were matched there. However, using a larger dictionary which also
includes large scale image features could probably remedy this issue.
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Figure 4: Depth reconstruction of a cube: Depth could be determined near matched
features (corners and edges) of the cube only. The bottom right cube is slightly
slanted towards the viewer and although no depth cues are present on the image,
the reconstruction found the slant. No features are matched in the center of the cube,
so no depth information is present there.

4 Discussion

We show that binding multiple modalities into compound features early in the pro-
cessing hierarchy yields processing units that can be used to improve performance
compared to mono-modal features in basic vision tasks. This result is interesting not
only with respect to our understanding of how depth processing in the human brain
might work, but also shows that we could learn from biology and build recognition
systems that employ early binding of modalities before detection of features.

Intuitively, per-feature disparity storage seems like a much more plausible way for
humans to store and process depth information than the 2.5D map traditionally often
used in robotics. It allows for an important processing optimization, since disparity
would only need to be evaluated for features that are actually used for visual tasks. A
similar method has been used successfully by Saxena et al. [16] in a robotic grasping
task of novel objects.

The approach also provides a suggestion on how to circumvent the binding prob-
lem, i.e. the question how separately extracted shape and depth features from mul-
tiple objects in a scene are later attributed to matching objects [21]. In our model,
we simply bind the modalities early when location information is still contained in the
features.

When spatial feature information is pooled in the final complex cell layer C2 of
the model, performance on the localization task drops significantly when executed
on monocular features (see fig. 3b). Here we found this effect on small-scale lo-
calization with respect to one object only. However, studies have shown that even
for self-localization on larger scales (e.g. within a city), histograms over simple fea-
tures provide a stronger location cue than more complex features [4, 5], suggesting
the hypothesis that this is a general property inherent to the localization task. We
conclude that for self-localization, it is advantageous to extract and match on simple
features aggregated from multiple modalities - like shape, disparity and color - rather
than building complex features from a single modality.
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